Histórias doutros mundos I
Para quem gosta de Física, Matemática e Geometria não euclidiana:
Let us take an atom hovering in space, or simply a particle of dust, carried along by the air, and let us imagine that this atom or particle of dust possesses a consciousness, i.e., separates himself from the outside world, and is conscious only of that which lies in the line of his motion, and with which he himself comes in contact. He will then be a one-dimensional being in the full sense of the word. He can fly and move in all directions, but it will always seem to him that he is moving upon a single line; outside of this line will be for him only a great Nothingness--the whole universe will appear to him as one line. He will feel none of the turns and angles of his line, for to feel an angle it is necessary to be conscious of that which lies to right or left, above or below. In all other respects such a being will be absolutely identical with the before-described imaginary being living upon the imaginary line. Everything that he comes in contact with, that is, everything that he is conscious of, will seem to him to be emerging from time, i.e., from nothing, vanishing into time, i.e., into nothing. This nothing will be all our world. All our world except one line will be called time and will be counted as actually non-existent.
Let us next consider the two-dimensional world, and the being living on a plane. The universe of this being will be one great plane. Let us imagine beings on this plane having the shape of points, lines, and flat geometrical figures. The objects and "solids" of that world will have the shape of flat geometrical figures too.
In what manner will a being living on such a plane universe cognize his world?
First of all we can affirm that he will not feel the plane upon which he lives. He will not do so because he will feel the objects, i.e., figures which are on this plane. He will feel the lines which limit them, and for this reason he will not feel his plane, for in that case he would not be in a position to discern the lines. The lines will differ from the plane in that they produce sensations; therefore they exist. The plane does not produce sensations; therefore it does not exist. Moving on the plane, the two-dimensional being, feeling no sensations, will declare that nothing now exists. After having encountered some figure, having sensed its lines, he will say that something appeared. But gradually, by a process of reasoning, the two-dimensional being will come to the conclusion that the figures he encounters exist on something, or in something. Thereupon he may name such a plane (he will not know, indeed, that it is a plane) the "ether." Accordingly he will declare that the "ether" fills all space, but differs in its qualities from "matter." By "matter" he will mean lines. Having come to this conclusion the two-dimensional being will regard all processes as happening in his "ether," i.e., in his space. He will not be in a position to imagine anything outside of this ether, that is, out of his plane. If anything, proceeding out of his plane, comes in contact with his consciousness, then he will either deny it, or regard it as something subjective, the creation of his own imagination; or else he will believe that it is proceeding right on the plane, in the ether, as are all other phenomena.
Sensing lines only, the plane being will not sense them as we do. First of all, he will see no angle. It is extremely easy for us to verify this by experiment. If we will hold before our eyes two matches, inclined one to the other in a horizontal plane, then we shall see one line. To see the angle we shall have to look from above. The two-dimensional being cannot look from above and therefore cannot see the angle. But measuring the distance between the lines of different "solids" of his world, the two-dimensional being will come continually in contact with the angle, and he will regard it as a strange property of the line, which is sometimes manifest and sometimes is not. That is, he will refer the angle to time; he will regard it as a temporary, evanescent phenomenon, a change in the state of a "solid," or as motion. It is difficult for us to understand this. It is difficult to imagine how the angle can be regarded as motion. But it must be absolutely so, and cannot be otherwise. If we try to represent to ourselves how the plane being studies the square, then certainly we shall find that for the plane being the square will be a moving body. Let us imagine that the plane being is opposite one of the angles of the square. He does not see the angle--before him is a line, but a line possessing very curious properties. Approaching this line, the two-dimensional being observes that a strange thing is happening to the line. One point remains in the same position, and other points are withdrawing back from both sides. We repeat, that the two-dimensional being has no idea of an angle. Apparently the line remains the same as it was, yet something is happening to it, without a doubt. The plane being will say that the line is moving, but so rapidly as to be imperceptible to sight. If the plane being goes away from the angle and follows along a side of the square, then the side will become immobile. When he comes to the angle, he will notice the motion again. After going around the square several times, he will establish the fact of regular, periodical motions of the line. Quite probably in the mind of the plane being the square will assume the form of a body possessing the property of periodical motions, invisible to the eye, but producing definite physical effects (molecular motion)--or it will remain there as a perception of periodical moments of rest and motion in one complex line, and still more probably it will seem to be a rotating body.
Quite possibly the plane being will regard the angle as his own subjective perception, and will doubt whether any objective reality corresponds to this subjective perception. Nevertheless he will reflect that if there is action, yielding to measurement, so must there be the cause of it, consisting in the change of the state of the line, i.e., in motion.
The lines visible to the plane being he may call matter, and the angles--motion. That is, he may call the broken line with an angle, moving matter. And truly to him such a line by reason of its properties will be quite analogous to matter in motion.
If a cube were to rest upon the plane upon which the plane being lives, then this cube will not exist for the two-dimensional being, but only the square face of the cube in contact with the plane will exist for him--as a line, with periodical motions. Correspondingly, all other solids lying outside of his plane., in contact with it, or passing through it, will not exist for the plane being. The planes of contact or cross-sections of these bodies will alone be sensed. But if these planes or sections move or change, then the two-dimensional being will think, indeed, that the cause of the change or motion is in the bodies themselves, i.e., right there on his plane.
As has been said, the two-dimensional being will regard the straight lines only as immobile matter; irregular lines and curves will seem to him as moving. So far as really moving lines are concerned, that is, lines limiting the cross-sections or planes of contact passing through or moving along the plane, these will be for the two-dimensional being something inconceivable and incommensurable. It will be as though there were in them the presence of something independent, depending upon itself only, animated. This effect will proceed from two causes: He can measure the immobile angles and curves, the properties of which the two-dimensional being calls motion, for the reason that they are immobile; moving figures, on the contrary, he cannot measure, because the changes in them will be out of his control. These changes will depend upon the properties of the whole body and its motion, and of that whole body the two-dimensional being will know only one side or section. Not perceiving the existence of this body, and contemplating the motion pertaining to the sides and sections he probably will regard them as living beings. He will affirm that there is something in them which differentiates them from other bodies: vital energy, or even soul. That something will be regarded as inconceivable, and really will be inconceivable to the two-dimensional being, because to him it is the result of an incomprehensible motion of inconceivable solids.
If we imagine an immobile circle upon the plane, then for the two-dimensional being it will appear as a moving line with some very strange and to him inconceivable motions.
The two-dimensional being will never see that motion. Perhaps he will call such motion molecular motion, i.e., the movement of minutest invisible particles of "matter."
Moreover, a circle rotating around an axis passing through its center, for the two-dimensional being will differ in some inconceivable way from the immobile circle. Both will appear to be moving, but moving differently.
For the two-dimensional being a circle or a square, rotating around its centre, on, account of its double motion will be an inexplicable and incommensurable phenomenon, like a phenomenon of life for a modern physicist.
Não é fascinante pensar que o nosso universo 3D não possa ser apenas uma pequena fracção de algo muito maior de dimensões não perceptíveis para o ser humano?
(in Tertium Organum, Ouspenky PD, 1912)
http://www.sacred-texts.com/eso/to/index.htm
Sem comentários:
Enviar um comentário